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Abstract 

This paper describes the application of adaptive multigrid techniques to the prob- 
lem of tropical cyclone track prediction. Based on the nondivergent barotropic vorticity 
equation, the model uses an adaptive multigrid method to refine the mesh around the 
moving vortex. Like conventional nested-grid models, this model achieves nonuniform 
resolution by superimposing uniform grids of different mesh sizes. Unlike nested-grid 
models, multigrid processing uses the interplay between solutions on fine and coarse 
grids—in regions where they overlap—to: (1) solve the implicit problem for the stream- 
function with optimum efficiency, (2) automatically achieve two-way interaction at the 
grid interfaces, and (3) provide accurate truncation error estimates for use in deter- 
mining where to refine or coarsen the grids. An exchange rate algorithm accomplishes 
the latter task, approximately optimizing the grid selection based on a user-specified 
tradeoff between accuracy and computational work. 

Numerical results demonstrate that the model chooses reasonable grids with mini- 
mal user intervention. Using adaptive mesh refinement is at least an order of magnitude 
more efficient than using a single uniform grid, and the overhead cost of adaptive re- 
gridding is less than two percent of the total execution time. The adaptive multigrid 
approach allows track prediction errors due to discretization to be essentially eliminated 
from the problem at a reasonable computational cost. 
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1    Introduction 

In many physical problems the spatial scale of the solution varies significantly over the 
domain. For example, a tropical cyclone is a relatively small-scale vortex embedded in a 
larger-scale flow, and accurate prediction of the vortex track may require resolving the flow 
both within and around the storm. Solving such problems numerically often requires variable 
resolution to accurately resolve the small-scale features without compromising the overall 
efficiency. Conventional nested-grid techniques (Kurihara et al., 1979; Berger and Öliger, 
1984) achieve local mesh refinement by superimposing nested uniform grids of varying mesh 
sizes. Such methods have been widely used for many years (e.g., Kurihara and Bender, 
1980; Juang and Hoke, 1992; Skamarock and Klemp, 1993). The success of conventional 
nested-grid tropical cyclone models such as the GFDL (Kurihara et al., 1998) and VICBAR 
(DeMaria et al., 1992) models demonstrates the value of this approach. 

In contrast to nested-grid models, multigrid methods (Brandt, 1977) use multiple grids 
of different mesh size covering the same region. The goal here is to solve the discretized 
equations with optimum efficiency: using simple relaxation on each grid to smooth the error 
on the scale of that grid produces the solution (on the finest grid) to the level of truncation 
error in computational work proportional to the number of unknowns (usually in the work 
of just a few relaxation sweeps). In addition to speeding up the solution process, multigrid 
processing provides accurate truncation error estimates, which can be used to determine 
where to refine (or coarsen) the grids in a local refinement scheme or to achieve higher-order 
accuracy via extrapolation. 

While the multigrid literature has many examples of combining multigrid processing with 
nested grids (e.g., Ciesielski et al., 1986; Bai and Brandt, 1987; Saleh, 1994; Rüge et al., 
1995), in nested-grid meteorological models the interaction between the solution on different 
grid levels has in general not been exploited. Indeed, some of the complexity of the VICBAR 
model is due to the fact that the computational grids are specifically not allowed to overlap. 

The purpose of this paper is to demonstrate the potential of adaptive multigrid meth- 
ods for time-dependent problems requiring local mesh refinement by describing an adaptive 
multigrid tropical cyclone track model. In the tradition of the barotropic models SANBAR 
(Sanders et al., 1975) and VICBAR, we refer to this multigrid barotropic model as MUD- 
BAR. Our primary focus here is on the numerical method: describing the adaptive multigrid 
approach in detail and documenting its performance. Indeed, the MUDBAR model currently 
has the simplest possible dynamics (nondivergent barotropic equation) and no physics. Nev- 
ertheless, the model is fast and accurate, and could be useful for operational forecasting (in 
particular, ensemble forecasts) if augmented with boundary data from a global model and 
an appropriate initialization scheme. 

The remainder of the paper is organized as follows. Section 2 describes the model equa- 
tions and solution method. The grid adaptation algorithm is presented in section 3. Numer- 
ical results appear in section 4, and our conclusions are summarized in section 5. 



2    Model Description 

In this section we briefly describe the governing equations, discretization, grid structure, and 
solution method of the MUDBAR model. A preliminary version of the model was described 
in Fulton (1997), to which the reader is referred for some of the more basic details. 

2.1    Governing Equations 

We formulate the model on a section of the sphere, transforming longitude A and latitude <j) 
to Cartesian coordinates x and y via the Mercator projection 

x = (A- \c)acos<j)c,        y = [tanh-1(sin</>) - tanh_1(sin</>c) acos<pc, (1) 

where a is the radius of the earth, so the projection is true at (Ac, <f>c) where (re, y) = (0,0). 
The model consists of the modified barotropic vorticity equation 

! + m.^+/h»*=ra>*C. (2) 
dt a(x, y) ox 

where the relative vorticity C, and streamfunction ip are related by 

(m2V2 - 7
2) V> = C- (3) 

Here V2 = d2/dx2 + d2/dy2, ß = 2üa~1 coscf) (with fi the rotation rate of the earth), and 
m = cos(f)c/cos<j) is the map factor. The /?-plane approximation is recovered by setting 
m = 1 and ß = 2fia_1 cos <j>c. There are two quasi-physical parameters: the diffusion 
coefficient u, and the parameter 7 (inverse of the effective Rossby radius) which helps prevent 
retrogression of ultralong Rossby waves. The model domain is a rectangle in x and y centered 
at (re, y) = (0,0). At the boundaries we specify the streamfunction \j) (and thus the normal 
component of the velocity); where there is inflow, we also specify the vorticity (. With these 
conditions the problem is well-posed (Öliger and Sundström, 1978). 

2.2    Discretization 

The space discretization uses second-order finite differences on uniform rectangular grids (as 
detailed below), approximating the advection terms by the Arakawa Jacobian (Arakawa, 
1966). Details of the boundary discretization are given in Fulton (1997). On a uniform grid 
with mesh size h in x and y, the space-discretized approximations to (2) and (3) can be 
represented in the form 

^ = Fh(i>hXh) (4) 

and 
LV = Ch, (5) 



where the grid functions tph and C^ consist of the values of the approximate solution on the 
grid h. 

The time discretization uses the classical fourth-order Runge-Kutta (RK4) scheme; this 
is highly accurate, allows relatively large time steps for stability, and—since it is a one- 
step scheme—is easy to implement and has no spurious computational modes. This scheme 
involves four stages per time step, each of which predicts a new value for (h via (4) and 
solves (5) for the corresponding iph. 

2.3    Grid Structure and Local Time Stepping 

The above discretizations are embedded in an adaptive method which includes local refine- 
ments in both space and time, superimposing nested uniform grids with different mesh sizes 
to adapt the resolution near the storm. The base grid Gx with mesh size hi covers the entire 
computational domain, while successively finer patches Gt with mesh sizes hi (I = 2, ..., 
n) cover smaller nested areas as shown in the example in Fig. 1. We use the mesh ratio 
hi-i/hi = 2 (to facilitate multigrid processing), and require the patches to be strictly nested 
(fine grid contained in the interior of the next coarser grid) and aligned (patch boundaries 
coincide with coarse-grid lines). For simplicity, we allow only one region of refinement (i.e., 
one grid patch per mesh size), but this is not a fundamental limitation of the method. 

The time stepping algorithm uses local time stepping, i.e., smaller time steps on finer 
grids; this algorithm is similar to that used in most nested-grid models (e.g., Berger and 
Öliger, 1984; DeMaria et al, 1992). Specifically, with two grids (coarse and fine) one full 
time step is executed as follows: 

1. One step (length At) on the coarse grid, 

2. Two steps (length At/2) on the fine grid, using boundary values interpolated from 
the coarse grid in space ((h linearly and tph by cubic interpolation) and time (linear 
interpolation), 

3. Transfer the fine-grid solution to the coarse grid where they overlap (i/>h by injection 
and Ch by full weighting). 

This algorithm generalizes recursively to more than two grids. Its application to three 
computational grids is illustrated in Fig. 2. 

2.4    Multigrid solution for streamfunction 

To solve (5) efficiently for the streamfunction iph on any computational grid Gt we use a 
multigrid method.   This uses point Gauss-Seidel relaxation with red-black ordering, full 
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Figure 1: Sample computational grids (h = 128, 64, 32, 16km). 

weighting of residuals, bilinear interpolation of corrections, and the full multigrid (FMG) 
algorithm with one V(l,l)-cycle per level and bicubic initial interpolation. As these elements 
are all standard, the reader is referred to Fulton et al. (1986) and the references therein for 
details. The resulting algorithm solves accurately for the streamfunction, producing residuals 
smaller than the truncation error; the computational work is comparable to about eight 
relaxation sweeps on the finest grid, and overall accounts for about two-thirds of the total 
execution time of the model1. Numerical results show that using more sweeps per cycle (or 
more cycles) produces smaller residuals but no significant improvement in the track error, 
and thus is not worth the extra computational expense. 

When used in the context of the adaptive grid structure described above, the standard 
multigrid approach is modified in several ways which deserve mention. First, with local time 
stepping, the next coarser grid G;_i may be at a different time t (e.g., at the end of time 
steps 2, 3, and 6 in Fig. 2). In this situation the main computational grids cannot be used 
for multigrid processing. Instead, for each computational grid Gi we use an additional set 

achieving the same accuracy with single-grid relaxation (SOR with optimal relaxation parameter) re- 
quires about 50-100 sweeps and roughly ten times as much total computer time. 
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Figure 2: Example of time stepping algorithm for one full time step At on 
three computational grids. The steps are executed in the numbered order, 
with left arrows denoting the transfer of the solution from the fine grid to the 
coarse grid where they overlap. Solid circles mark times and grids where the 
truncation error is estimated for regridding. 

of coarse grids with mesh sizes 2hh 4/iz, 8ht, etc., covering the same domain as G\ (Fulton, 
1997). These "local coarse grids" may be used in two ways. The Berger-Oliger (BO) method 
uses them at all times, resulting in only one-way interaction between the grids: the fine grid 
uses boundary values from the coarse grid (step 2 above), but its effect is felt on the coarse 
grid only through the solution transfer in the overlap region at the end of the time step 
(step 3 above). In contrast, the multigrid (MG) method uses the full computational grid 
Gi-i instead of the first local coarse grid during multigrid cycling in the final RK4 stage of 
the second fine-grid time step (e.g., at the end of time steps 4, 5, and 7 in Fig. 2). This 
results in automatic two-way interaction between the computational grids, since fine-grid 
information can affect the entire coarse grid immediately through the relaxation process. 
Preliminary results (Fulton, 1997) showed that the differences between these two methods 
are generally small; further experimentation (see section 4.4) shows some improvement with 
the MG approach, so that is used in all other results presented here. 

Second, using the full computational coarse grid in the MG method requires Full Ap- 
proximation Scheme (FAS) processing (Brandt, 1977), since each grid patch covers a smaller 
domain than the previous one. Specifically, if on a grid patch Gi (I > 1) with mesh size 
h = hi we denote by iph the current approximation to the true (discrete) solution iph, then 
the diagnostic equation to be solved in the overlap region on the next coarser grid G*_i with 



mesh size 2h = fy_i is 

LV* = C2h ■= L2h(I2
h
h4>h) + I2

h
h(Ch - Lh4>h), (6) 

and the corresponding correction to the fine-grid solution is given by 

^4-^ + 4(^-5*^). (7) 

Here, the fine-to-coarse transfer operators l|/l and Ilh represent injection and full weighting, 
respectively, and the coarse-to-fine transfer operator I%h represents bilinear interpolation. In 
the region of the coarse grid not covered by the fine grid, the FAS equation (6) is replaced 
by L2hijj2h = C2h and no correction (7) is needed. When the local coarse grids are used (e.g., 
for the first time step on the fine grid) FAS processing is still used for convenience, even 
though the simpler correction scheme could be used. 

Third, to properly represent the net fine-grid vorticity on the coarse grid when the grids 
are nested, a correction must be applied at the grid interfaces. As shown by Bai and Brandt 
(1987), this correction is accomplished by setting the coarse-grid vorticity at the grid interface 

Here B2!1 is the one-dimensional full weighting operator along the boundary and D2h is the 
one-sided difference approximation (over grid length 2h) to the outward normal derivative2. 
For example, at a point along the eastern boundary of a fine-grid patch indexed in x and y 
as (b,j) on the fine grid and (B, J) on the coarse grid, we have 

(ß?*1)«=^"2f-
2"'.   a»?*»)»./=*^M,       (9) 

and 
{BI

H
C

H
)B,J = \Cb,j-i + K&J + 4^>j+i> (10) 

where ■ip2h = i^fr is the initial FAS approximation on the coarse grid. Other than the cor- 
rection (8), no special treatment is required at the grid interfaces; in particular, no extended 
overlap or transition region is used or needed. 

2In Bai and Brandt (1987) the sign of D^1 is reversed, which appears to be an error. 



3    The Grid Adaptation Algorithm 

The preliminary version of the model described in Fulton (1997) used movable grids, i.e., 
patches with sizes fixed in advance were simply moved when necessary to keep them ap- 
proximately centered on the vortex. The results indicated that some choices of patch sizes 
substantially increased the accuracy or efficiency (relative to using a single uniform grid), 
while others led to significantly less improvement. Since the optimal combination of patch 
sizes will depend on both the vortex and the surrounding flow and may vary as the solution 
evolves, choosing fixed patch sizes "manually" is less than ideal: a fully automatic algorithm 
would be advantageous. This section details such an algorithm; we refer to the grids it 
chooses as adaptive grids. 

3.1    Basic regrid strategy 

The MUDBAR model regrids, i.e., chooses patch sizes and locations adaptively, by estimating 
the truncation error and placing the grid patches where the truncation error is large. The 
regridding algorithm is embedded in the local time stepping algorithm of section 2.3 as follows 
(see Fig. 3). Before starting a time step on a given grid with mesh size h—here considered to 
be the "coarse grid"—the truncation error is estimated (see section 3.2). Points where the 
truncation error is large (see section 3.3) are flagged for refinement, as indicated by "x" in 
Fig. 3(a). Second, after the the time step is complete the truncation error is again estimated 
and large values are flagged for refinement, as shown in Fig. 3(b). Third, the smallest 
acceptable patches at the beginning and end of the step are determined (dotted and dashed 
outlines, respectively, in Fig. 3), and a suitable fine-grid patch with mesh size h/2 is chosen 
to cover both of these (solid outlines in Fig. 3(b)). Finally, that patch is "filled" with values 
of the vorticity C,h/2 and streamfunction iph/2. The patch so constructed is then used for 
the two fine-grid time steps which coincide with the single time step originally taken on the 
coarse grid. 

This process is repeated recursively, i.e., during each of the two fine-grid steps a size 
and location are chosen for the next finer patch (if needed), proceeding to increasingly finer 
grids until either further refinement is not needed or a specified maximum number of grids 
is reached. This recursion is illustrated in Fig. 2, where the solid circles denote times at 
which the truncation error is estimated. For example, the truncation error on level / = 2 is 
computed before and after time step 5 (at t = At/2 and t = At, respectively) and used to 
determine the location and size of the next finer patch I = 3 for time steps 6 and 7 (from 
t = At/2 to t = At). 

To fill a given patch, the vorticity £h/2 is set by copying values from the previous version 
of that grid (if any) where they coincide and using bilinear interpolation from the coarse 
grid where the fine grid is new; at t = 0 the specified initial vorticity is used instead. The 
streamfunction xph/2 is set likewise except that bicubic interpolation is used; if the patch 
is new (e.g., at t = 0) then iph/2 is obtained instead by solving (5) with boundary values 
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Figure 3: Choice of a fine-grid patch. The contours show truncation errors 
(large values flagged by x) at: (a) the start of the time step, and (b) the end 
of the time step. The boundaries of the minimum acceptable patch at the 
start (dotted) and end (dashed) are shown, along with the patch chosen for 
the step (solid). 

interpolated (cubically) from the coarse grid. During model initialization at t = 0, adaptive 
grids are constructed by starting with a specified base grid and constructing patches as 
dictated by the truncation error as outlined above. If the first patch covers most of the base 
grid (i.e., the base grid resolution is inadequate), this patch is extended to the full domain to 
replace the base grid and the process is repeated. Once the initial grids are set—and thus the 
fine-grid information has influenced the solution on all coarser levels-a second pass through 
the grid adaptation algorithm is made to take advantage of that fine-grid information. 

Even though new grids are chosen for each time step on each level, the regridding process 
adds surprisingly little overhead to the execution time. All calculations required for regrid- 
ding (estimating the truncation error, choosing the grid, and filling it by copying and/or 
interpolation) typically amount to less than two percent of the total execution time of the 
model. This slight overhead is more than made up for by the fact that the grid chosen at 
each step on each level is precisely the size needed for the entire step, and no larger. Indeed, 
a simpler scheme based on regridding on all levels only at the end of each base-grid time 
step regrids much less often but must choose larger patches (since they must be adequate 
for several fine-grid time steps) and thus takes more time (typically 20-30% more). 

The model also includes an option for using movable grids, i.e., fixed patch sizes specified 
in advance.   This differs from the preliminary version described in Pulton (1997) in that 



the patch locations are now chosen for an interval in time, rather than an instant. This is 
done by finding the vortex center at the beginning and end of the coarse-grid time step and 
centering the fine-grid patch for the corresponding two fine-grid time steps halfway between 
these two points. Except for this choice of patch location (and the fixed size), the regrid 
strategy with movable grids is identical to that described above for adaptive grids. 

3.2    Truncation error estimates 

The truncation error estimate needed for grid adaptation may be computed essentially for 
free using FAS processing; this idea was introduced by Brandt (1977) and is similar to that 
described by Skamarock (1989). Specifically, we want to base our grid refinement criterion 
on the truncation error 

rh := LhIhiP - Ih(, (11) 

where if) and £ represent the true solution of the continuous problem (3) and Ih represents 
their pointwise restriction to grid h. It can be shown that the relative truncation error 

T2H ;= ^ _ f2h(.H (12) 

provides an accurate approximation to the truncation error difference T
2h — l^h

T
h, ln contrast 

to the analysis of Bernert (1997), we find that with injection as the fine-to-coarse transfer 
Ilh in (12), this estimate is fourth-order accurate (e.g., Fulton, 1989). Since T

H
 = 0(h2), we 

obtain the estimate 

rh « \r2
h
h (13) 

which has accuracy 0(h4). Since (?h is known only at the coarse-grid points, it is possible 
to compute T%h only at the coarse-grid points; however, the estimate (13) is scaled so it 
is indeed an estimate of the truncation error on the fine grid. Note that while T%

H
 can be 

computed from (12) with essentially no work (only one subtraction per coarse-grid point) 
during the last V-cycle of the FMG method, computing it separately after completing that 
cycle adds very little work and produces a better estimate of rh, since it is based on the final 
solution for iph (rather than the initial approximation). 

3.3    Patch location and size 

The determination of what constitutes a "large" value of truncation error follows the method 
outlined by Brandt (1977), which uses a parameter A, called the exchange rate, to control the 
trade-off between increased accuracy and increased work3. A point on the grid h is flagged 
for refinement if 

h2Th > A (14) 

3 The exchange rate A originates as a Lagrange multiplier in the problem of minimizing the error subject 
to the constraint of constant work (or minimizing the work subject to constant error). 

10 



there. In this criterion, h2 accounts for the work needed on the new grid and rh measures the 
accuracy. Thus, using a large value of A says to refine only when the error is large, and thus 
should give a fast solution—with a relatively large error. Conversely, using a small value of 
A indicates a willingness to exchange more work to get more accuracy (smaller error). 

Once the points where the truncation error on the coarse grid (mesh spacing h) is large— 
in the sense of (14)—are located, the boundaries of the fine-grid patch (mesh spacing h/2) 
must be determined. For simplicity, the model currently uses only rectangular grids (and 
only one grid per value of h, so only one region is refined), so we can simply determine 
the smallest rectangles enclosing the large truncation errors before and after the step, as 
shown in Fig. 3. The tentative boundary of the patch for the full time step is simply the 
smallest rectangle enclosing both of these (i.e., their convex hull). This boundary may then 
be adjusted by adding a "buffer" of several grid intervals (usually two) to give some flexibility 
when the truncation error is highly localized. Finally, the patch size may be increased (or 
possibly slightly decreased) if needed to achieve good coarsenability, i.e., so that the number 
of points on the coarsest local coarse grid is small, thus increasing the efficiency of solving for 
the streamfunction on the patch. The algorithm employed here uses simple work estimates 
as detailed in the Appendix. In any case, strict nesting of the patch is enforced. 

11 



4    Results 

This section summarizes the results of many model runs designed to explore the performance 
of the model for various situations. 

4.1    Initial conditions 

Except as otherwise noted, we use the initial conditions of DeMaria (1985) and associated 
parameter values as follows. The initial vortex has tangential wind given by 

™-*-£)!?W (15) 

where r = [(x - x0)
2 + (y - yo)2]1/2 is the radial distance from the vortex center (x0,y0). 

Note that V has the approximate maximum value Vm near r = rm (exact when a = 0); 
the exponential factor is included to make V vanish quickly for large r. The vortex can 
be made slightly elliptical (to introduce some small-scale structure, as in the spiral bands 
studied by Guinn and Schubert (1993)) by dividing the x or y factor in the definition of r 
by (i _ e

2), where e is the desired ellipticity. We consider two cases: a "weak hurricane" 
with Vm = 30 m s"1 and rm = 80 km, and a "strong hurricane" with Vm = 60 m s_1 and 

= 20 km. For both we use the values a = 10"6, b = 6, and e = 0.8. The environmental r. m 

flow is the zonal current with streamfunction given by 

«* = (%)«»&)■ (16) 

The computational domain is a square of side length 4096 km on a /3-plane centered at 
latitude 20° N. The vortex is centered initially at x0 = 768 km and y0 = -768 km, and we 
use the values ü0 = 10 ms-1, L = 4096 km, and 7 = 0 and v = 0. 

4.2    Sample solution 

Figure 4 illustrates the solution of the model for the weak hurricane case. The left-hand pan- 
els show the streamfunction ip and the right-hand panels show the corresponding vorticity (. 
For this run, the base grid has size 64 x 64 (hi = 64km), the exchange rate is A = 1000, and 
the grid refinement is limited to three patches, so the finest mesh used is hA = 8 km. The 
boundaries of the grid patches chosen by the adaptive algorithm are shown in the figures. It 
can be seen that the patch sizes tend to grow slightly during the model run; the apparent 
slight bias toward refining the grids behind the vortex is likely due to the larger truncation 
errors in the wake which are characteristic of centered finite differences. This effect could 
probably be lessened by including a small amount of dissipation; however, the model run 
shows that no dissipation is needed to achieve reasonable performance. In particular, no 
problems are observed at the grid interfaces. 

12 
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Figure 4: Sample solution: the weak hurricane case. 
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Figure 4 (continued). 
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4.3    Accuracy and efficiency 

To measure the accuracy of the model in the absence of an analytical solution, we compare 
the tropical cyclone track to that obtained in a high-resolution reference run with uniform 
resolution h = 4 km. The track error is defined as the distance between the location of the 
vortex center (vorticity maximum) and that of the reference run, with the center located by 
quadratic interpolation using four points surrounding the vorticity maximum on the finest 
grid (Smith et al, 1990); the mean forecast error is computed over a 72 hour model run (using 
trapezoidal quadrature with a step size of one hour). Computational work is measured by 
the CPU time required for the model run (on a SUN Ultra60 workstation with one 360 MHz 
processor). 

Figure 5 shows the mean forecast error as a function of the computer time used for a 
large number of model runs for the weak hurricane case. The points plotted with "+" are for 
uniform-resolution model runs (i.e., a base grid with no finer grid patches) with the indicated 
resolution. The line joining these points indicates a baseline (uniform grid) performance. The 
isolated points to the left of this line are for model runs with various combinations of movable 
grids (i.e., fixed size patches), using essentially every reasonable combination of patches with 
mesh sizes from h = 128km to h = 4km. The points plotted with "x" are for the adaptive 
model. These are connected by lines according to the finest mesh size allowed in the run; 
different points on each line correspond to different values of the exchange rate A from 104 to 
101, with errors generally decreasing—and CPU time increasing—as A decreases. The figure 
shows a savings of roughly a factor of ten in computer time by using local mesh refinement, 
and suggests that in most cases the grids chosen by the adaptive algorithm are reasonable. 

Figure 6 shows analogous results for the strong hurricane case. Since the vortex is both 
smaller and stronger, errors for a given amount of work are generally larger than in the 
previous case. Again the adaptive multigrid method chooses reasonable grids; in some cases 
the savings of execution time (compared to using uniform resolution) approach a factor 
of 100. Similar results are obtained in other cases. For example, for Figure 7 the strong 
hurricane vortex is embedded in a different environmental flow with zonal wind 

u(y) =   —  exP (17) 

where u0 = 10 ms-1 and yi = 443.4 km. For this case the vortex is centered initially at 
x0 = 768 km and y0 = 768 km, where the positive Laplacian of the environmental vorticity 
leads to increased sensitivity of the vortex track to initial position errors (DeMaria, 1985). 
For the small vortex used here, this sensitivity is not evident; the adaptive model performs 
as well or better than in the other cases. 

4.4    Effect of two-way interaction 

Figure 8 demonstrates the effect of including two-way interaction between the computational 
grids. Each point represents the difference in mean forecast error between the Berger-Oliger 
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Figure 8: Comparison of accuracy achieved by the BO (one-way interaction) 
and MG (two-way interaction) methods for the weak hurricane case. 

(BO) method and multigrid (MG) method as described in section 2.4. The points are plotted 
as a function of the error produced by the MG method for many runs with different choices 
of movable grids. The differences between the accuracy of the two methods are small—and 
can go either way—but when one method is better, it is usually the multigrid method, which 
includes two-way interaction. 

4.5    A barotropically unstable vortex 

The adaptive multigrid method might be especially advantageous for modeling a vortex 
which not only moves but has small-scale structure which evolves with time. While the non- 
divergent barotropic model employed here is incapable of representing the baroclinic effects 
and convection related to tropical cyclone intensification, it can represent the basic physical 
process of potential vorticity (PV) mixing. Thus, we consider the case of a barotropically 
unstable vortex which develops small-scale asymmetries due to chaotic nonlinear PV mixing 
and evolves toward a smooth symmetric vortex as it moves. 
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As an initial condition we use the "PV ring" vortex of Schubert et al. (1999) embedded 
in the zonal current (16). All parameters have the values given in that paper, except for 
the diffusion parameter v for which we use the larger value 300m2s_1, corresponding to an 
e-folding time of 338 s for a wavelength of 2 km. For this case we run the model with spherical 
geometry using the Mercator projection (1). We present results of two model runs: one using 
movable grids and the other using adaptive grid patches (with exchange rate A = 20). In 
both cases we start with the base grid size 128 x 128 with mesh spacing h = 32 km and 
corresponding time step At = 20 minutes. The movable grid run uses six square patches 
with side lengths ranging from 1/4 to 1/32 of the domain size. The adaptive run is limited 
to six adaptive grid patches; however, the model rejects the base grid as inadequate and 
consequently uses the base grid mesh spacing h - 16 km and up to five adaptive grids. 
Thus, for both runs the model domain is 4096 km square and the finest mesh spacing is 
h = 0.5 km. 

Figure 9 shows the details of the solution computed using movable grids (left panels) and 
adaptive grids (right panels). Only a region 256 km square centered on the vortex is shown. 
Since the vorticity is not always maximum at the center of the ring, we define the vortex 
center as the vorticity centroid (taken over the region where £ > /, to eliminate bias from the 
environmental vorticity). These results are quite similar to those of Schubert et al. (1999) up 
to at least t = 6 hours, verifying that the characteristic wavenumber-four pattern observed 
in that study is due to the dynamics, and is not an artifact of the periodicity required for 
the spectral model used. At later times, the solutions are qualitatively similar but differ in 
detail, as expected due to the chaotic nature of the PV mixing. Comparing the two solutions, 
we find that the details of the small-scale structure are quite similar; also, the vortex tracks 
(not shown) differ by only about 7 km over the course of the 72 hour model run. However, 
the run using adaptive grids was six times faster (about 16 minutes on a SUN Ultra60), since 
as the solution evolves toward a smooth symmetric vortex the finest grid patches are no 
longer needed and are automatically discarded. 
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Figure 9: Vorticity for the PV ring case computed using movable grids (left 
panels) and adaptive grids (right panels). Solid rectangles show patch bound- 
aries. The finest patch shown has mesh size h = 0.5 km in each case except 
the adaptive grids at t = 24hours (h = 1 km) and t = 72 hours (h = 2 km). 
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5    Conclusions and Remarks 

We have used the problem of tropical cyclone track prediction to investigate the potential of 
the adaptive multigrid method. Combining nesting of uniform grids, multigrid processing, 
and adaptive mesh refinement based on truncation error estimates, the method provides a 
seamless discretization with enhanced resolution precisely where it is needed. Numerical 
results from the nondivergent barotropic model MUDBAR show the method performs well, 
generally reducing the execution time by an order of magnitude or more (relative to using 
uniform grids) and choosing reasonable grids with a minimum of user intervention. Compared 
to conventional nested-grid models, the treatment of grid interfaces is particularly simple 
(although that simplicity may be more a result of using simple dynamics rather than the 
numerical method). These results are encouraging, and suggest that adaptive multigrid 
methods may be useful in other problems requiring time-dependent local mesh refinement. 

While the model as it stands is fast and accurate, there is much room for improve- 
ment. We are currently working on two modifications which should substantially improve 
the inherent accuracy, namely, converting the model to the shallow-water equations and 
implementing fourth-order space differencing. To be useful for actual prediction, the model 
should be supplied with time-dependent boundary data from a global model and an appro- 
priate initialization scheme. Given its speed and accuracy, the resulting model could be 
especially appropriate for ensemble forecasting techniques. 

The numerical method presented here may in fact be overkill: for tropical cyclone track 
prediction, discretization errors may be less important than observational uncertainties or 
incomplete representations of the physics. Indeed, since the discretization is the only source 
of error considered here, our numerical results show far more accuracy than could be hoped 
for in operational prediction. Nevertheless, the adaptive multigrid approach allows one to 
effectively remove discretization error from the problem, and does so in a natural, robust, 
and efficient manner. 
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Appendix:    Grid Size Adjustment 

Once the desired grid size is determined based on the truncation error as described in sec- 
tion 3.2, it may be adjusted to ensure good coarsenability. For example, if the desired grid 
is 38 x 28 (grid intervals in x and y), this can be coarsened only once (to 19 x 14) for multi- 
grid processing; since the coarsest grid is large, the multigrid solver is inefficient. In such a 
situation it will pay to increase the grid size slightly, e.g., to 40 x 28 (which can be coarsened 
twice down to 10 x 7) or even to 40 x 32 (which can be coarsened three times down to 5 x 4). 
We do this as follows. Starting with the desired size iVx x Ny (grid intervals in x and y): 

1. Search for a grid slightly larger than desired by increasing Nx and/or Ny so they have 
at least one more factor of two in common, thus allowing at least one more coarse grid 
for multigrid processing. Accept the larger grid only if it can be strictly nested and 
gives a predicted gain in efficiency. Repeat until no gain in efficiency is produced. 

2. Test grid sizes slightly smaller than desired (while keeping at least as many coarse 
grid levels as obtained in step 1). Accept such a grid only if it results in a substantial 
predicted gain in efficiency. 

To predict the gain in efficiency for a proposed change of grid size, let W^(Nx,Ny) and 
WTP(NX,NV) represent the computational work required to predict £ and solve for V, re- 
spectively, for one time step on a computational grid of size Nx x Ny. We assume that 
W{(Nx,Ny) is proportional to the number of grid points, and thus to the product NxNy. 
We also assume—at least for grids which are sufficiently coarsenable—that W^(Nx,Ny) « 
uW{(Nx,Ny) for some constant factor u; empirically we find that u « 2. Then the gain in 
efficiency (i.e., the speedup) in changing from grid size Nx x Ny to Nx x Ny is predicted to 
be 

Wc(Nx,Ny) + Wi>(Nx,Ny) _     1 

WC(NX, Ny) + W^N*, Ny) ~ w + 1 

'  W4Nx,Ny)  , NxNy 
LÜ —~ 7T- 1 — (18) 

Wx 

W^N^Ny)        NxNy, 

To estimate Wj, we first estimate the work required for a multigrid V-cycle with m grid levels 
(using uc relaxation sweeps on the coarsest grid and Vj on each of the finer grids) as 

•H = ^(l + J + ^ + -+^)+-c=^(4-^)+j^r (19) 

work units (one work unit is the work of one sweep on the finest grid), where we have 
neglected the work of grid transfers. The corresponding work for the FMG algorithm with 
one V-cycle per level is then 

WF(m) = Wv(m) + \wv(m - 1) + • • • + -±jWv{2) + -^ . (20) 

work units. The number of sweeps on the coarsest grid is set by the requirement that 

(PG)
VC
 ~ (fl)Vf> where 

1 / r\vn—I \ /ATT)—I \ ^ 

Pa = l 

f2m-1n\ /2m~V 
C0St_r]+C0SU_-, (21) 
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is the spectral radius of the Gauss-Seidel iteration operator on the coarsest grid and ß = 0.25 
is the multigrid smoothing factor for Gauss-Seidel relaxation with red-black ordering. Solving 
for vc, substituting from (19) in (20) and multiplying by the number of grid points on the 
finest grid yields the estimate 

NxNy 

w*(N*>Nv) = -&=i "«--»-t'-^-äfö}    (22) 

for the total number of operations required to solve for ip on a grid of size Nx x Ny (here 
normalized by the number of operations required per gridpoint per sweep). Combining (22) 
with (18) gives an effective way to predict the gain in efficiency when considering a new grid 
size. 
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